Finite Difference Discretization of the Kuramoto–sivashinsky Equation
نویسنده
چکیده
We analyze a Crank–Nicolson–type finite difference scheme for the Kuramoto– Sivashinsky equation in one space dimension with periodic boundary conditions. We discuss linearizations of the scheme and derive second–order error estimates.
منابع مشابه
Backward Difference Formulae for Kuramoto–sivashinsky Type Equations∗
We analyze the discretization of the periodic initial value problem for Kuramoto–Sivashinsky type equations with Burgers nonlinearity by implicit– explicit backward difference formula (BDF) methods, establish stability and derive optimal order error estimates. We also study discretization in space by spectral methods.
متن کاملExact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملHolistic finite differences accurately model the dynamics of the Kuramoto-Sivashinsky equation
We analyse the nonlinear Kuramoto-Sivashinsky equation to develop an accurate finite difference approximation to its dynamics. The analysis is based upon centre manifold theory so we are assured that the finite difference model accurately models the dynamics and may be constructed systematically. The theory is applied after dividing the physical domain into small elements by introducing insulat...
متن کاملSeptic B-Spline Collocation Method for Numerical Solution of the Kuramoto-Sivashinsky Equation
In this paper the Kuramoto-Sivashinsky equation is solved numerically by collocation method. The solution is approximated as a linear combination of septic B-spline functions. Applying the Von-Neumann stability analysis technique, we show that the method is unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions....
متن کاملAccurately Model the Kuramoto-Sivashinsky Dynamics with Holistic Discretization
We analyse the nonlinear Kuramoto–Sivashinsky equation to develop accurate discretisations modeling its dynamics on coarse grids. The analysis is based upon centre manifold theory so we are assured that the discretisation accurately models the dynamics and may be constructed systematically. The theory is applied after dividing the physical domain into small elements by introducing isolating int...
متن کامل